Intravascular Imaging of Atherosclerosis by Using Engineered Nanoparticles
Atherosclerosis is a leading cause of morbidity and mortality, and high-risk atherosclerotic plaques can result in myocardial infarction, stroke, and/or sudden death. Various imaging and sensing techniques (e.g., ultrasound, optical coherence tomography, fluorescence, photoacoustic) have been develo...
Gespeichert in:
Veröffentlicht in: | Biosensors (Basel) 2023-02, Vol.13 (3), p.319 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atherosclerosis is a leading cause of morbidity and mortality, and high-risk atherosclerotic plaques can result in myocardial infarction, stroke, and/or sudden death. Various imaging and sensing techniques (e.g., ultrasound, optical coherence tomography, fluorescence, photoacoustic) have been developed for scanning inside blood vessels to provide accurate detection of high-risk atherosclerotic plaques. Nanoparticles have been utilized in intravascular imaging to enable targeted detection of high-risk plaques, to enhance image contrast, and in some applications to also provide therapeutic functions of atherosclerosis. In this paper, we review the recent progress on developing nanoparticles for intravascular imaging of atherosclerosis. We discuss the basic nanoparticle design principles, imaging modalities and instrumentations, and common targets for atherosclerosis. The review is concluded and highlighted with discussions on challenges and opportunities for bringing nanoparticles into in vivo (pre)clinical intravascular applications. |
---|---|
ISSN: | 2079-6374 2079-6374 |
DOI: | 10.3390/bios13030319 |