A Review of Bimetallic and Monometallic Nanoparticle Synthesis via Laser Ablation in Liquid

Pulsed laser ablation in liquid (PLAL) is a physical and top-down approach used to fabricate nanoparticles (NPs). Herein, the research methods and current trends in PLAL literature are reviewed, including the recent uses of PLAL for fabricating bimetallic nanoparticles (BNPs) and composites. BNPs ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2023-02, Vol.13 (2), p.253
Hauptverfasser: Nyabadza, Anesu, Vazquez, Mercedes, Brabazon, Dermot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulsed laser ablation in liquid (PLAL) is a physical and top-down approach used to fabricate nanoparticles (NPs). Herein, the research methods and current trends in PLAL literature are reviewed, including the recent uses of PLAL for fabricating bimetallic nanoparticles (BNPs) and composites. BNPs have gained attention owing to their advanced physicochemical properties over monometallic NPs. PLAL involves the irradiation of a solid target (usually a rod, plate, or thin film) under a liquid medium. The liquid collects the ejected NPs resulting from the laser processing, which produces a colloid that can be in various applications, including plasmon sensing, energy harvesting, and drug delivery. The most used fabrication techniques, including the use of microorganisms, do not have precise NP size control and require the separation of the microorganisms from the produced NPs. PLAL is quicker at producing NPs than bottom-up methods. The drawbacks of PLAL include the need to find the required laser processing parameters, which requires extensive experimentation, and the complex and non-linear relationships between the inputs and the outputs (e.g., NP size).
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13020253