Ultrafast photomechanical transduction through thermophoretic implosion
Since the historical experiments of Crookes, the direct manipulation of matter by light has been both a challenge and a source of scientific debate. Here we show that laser illumination allows to displace a vial of nanoparticle solution over centimetre-scale distances. Cantilever-based force measure...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-01, Vol.11 (1), p.50-7, Article 50 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the historical experiments of Crookes, the direct manipulation of matter by light has been both a challenge and a source of scientific debate. Here we show that laser illumination allows to displace a vial of nanoparticle solution over centimetre-scale distances. Cantilever-based force measurements show that the movement is due to millisecond-long force spikes, which are synchronised with a sound emission. We observe that the nanoparticles undergo negative thermophoresis, and ultrafast imaging reveals that the force spikes are followed by the explosive growth of a bubble in the solution. We propose a mechanism accounting for the propulsion based on a thermophoretic instability of the nanoparticle cloud, analogous to the Jeans’s instability that occurs in gravitational systems. Our experiments demonstrate a new type of laser propulsion and a remarkably violent actuation of soft matter, reminiscent of the strategy used by certain plants to propel their spores.
Here, the authors observe that laser illumination allows to displace a vial of nanoparticle solution over centimetre-scale distances. In order to explain this, they describe a novel mechanism for laser propulsion of a macroscopic object, based on light-induced thermophoresis. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-13912-w |