Fast and multiplexed superresolution imaging with DNA-PAINT-ERS

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) facilitates multiplexing in superresolution microscopy but is practically limited by slow imaging speed. To address this issue, we propose the additions of ethylene carbonate (EC) to the imaging buffer, sequence repeats to the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-08, Vol.11 (1), p.4339-4339, Article 4339
Hauptverfasser: Civitci, Fehmi, Shangguan, Julia, Zheng, Ting, Tao, Kai, Rames, Matthew, Kenison, John, Zhang, Ying, Wu, Lei, Phelps, Carey, Esener, Sadik, Nan, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) facilitates multiplexing in superresolution microscopy but is practically limited by slow imaging speed. To address this issue, we propose the additions of ethylene carbonate (EC) to the imaging buffer, sequence repeats to the docking strand, and a spacer between the docking strand and the affinity agent. Collectively termed DNA-PAINT-ERS (E = EC, R = Repeating sequence, and S = Spacer), these strategies can be easily integrated into current DNA-PAINT workflows for both accelerated imaging speed and improved image quality through optimized DNA hybridization kinetics and efficiency. We demonstrate the general applicability of DNA-PAINT-ERS for fast, multiplexed superresolution imaging using previously validated oligonucleotide constructs with slight modifications. DNA-PAINT is a powerful super-resolution imaging method but is limited in speed due to slow exchange kinetics of the imaging strand. Here the authors present a method involving the addition of ethylene carbonate to the imaging buffer and modifications to the docking strand to improve the quality and speed of DNA-PAINT.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18181-6