Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification

Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-07, Vol.11 (1), p.3311-3311, Article 3311
Hauptverfasser: Geng, Zhi, Wang, Yanfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimensional and multi-scale signals, making traditional convolutional neural networks (CNNs) computationally costly. Here we propose a highly efficient and resource-saving CNN architecture (SeismicPatchNet) with topological modules and multi-scale-feature fusion units for classifying seismic data, which was discovered by an automated data-driven search strategy. The storage volume of the architecture parameters (0.73 M) is only ~2.7 MB, ~0.5% of the well-known VGG-16 architecture. SeismicPatchNet predicts nearly 18 times faster than ResNet-50 and shows an overwhelming advantage in identifying Bottom Simulating Reflection (BSR), an indicator of marine gas-hydrate resources. Saliency mapping demonstrated that our architecture captured key features well. These results suggest the prospect of end-to-end interpretation of multiple seismic datasets at extremely low computational cost. The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-17123-6