Characteristics of Gel Time and Dielectric Strength of Epoxy Composite According to the Mixing Ratio of Micro-Fillers

The dielectric strength and gel time of epoxy composites vary with the mixing ratio of epoxy resin, hardener, additives, filler, etc., and especially the gel time affects the productivity and economics of ultra-high-voltage (UHV) equipment. However, previous studies focused only on the dielectric st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-10, Vol.13 (19), p.5165
Hauptverfasser: Oh, Dong-Hun, Kim, Ho-Seung, Shim, Jae-Hun, Jeon, Young-Ho, Kang, Da-Won, Lee, Bang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dielectric strength and gel time of epoxy composites vary with the mixing ratio of epoxy resin, hardener, additives, filler, etc., and especially the gel time affects the productivity and economics of ultra-high-voltage (UHV) equipment. However, previous studies focused only on the dielectric strength of epoxy composites for the reliability of UHV equipment. Therefore, a study considering both the dielectric strength and gel time of the epoxy composite is required. In this paper, the characteristics of the gel time and dielectric strength of the epoxy micro-composites according to the mixing ratio of silica (SiO2) and alumina (Al2O3) micro-fillers without changing the mixing ratio of epoxy resin and hardener are analyzed. Experimental results show that the gel time decreased and the dielectric strength increased as the mixing ratio of the SiO2 micro-filler increased. Therefore, it is concluded that the gel time can be controlled by changing the mixing ratio of micro-fillers without changing the mixing ratio of the epoxy resin and hardener. In addition, experimental data can be used as basic data for economical production considering both the reliability and productivity of UHV power equipment.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13195165