RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants

Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2019-11, Vol.20 (1), p.254-254, Article 254
Hauptverfasser: Lin, Hai, Hargreaves, Katherine A, Li, Rudong, Reiter, Jill L, Wang, Yue, Mort, Matthew, Cooper, David N, Zhou, Yaoqi, Zhang, Chi, Eadon, Michael T, Dolan, M Eileen, Ipe, Joseph, Skaar, Todd C, Liu, Yunlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-019-1847-4