Glacial–interglacial seawater isotope change near the Chilean Margin as reflected by δ2H values of C37 alkenones

Stable hydrogen isotopic compositions of long-chain alkenones with 37 carbon atoms (δ2HC37) have been shown to reflect seawater salinity in culture and environmental studies, and this potential sea surface salinity proxy has been applied to several downcore records from different regions. However, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate of the past 2023-10, Vol.19 (10), p.1919-1930
Hauptverfasser: Hättig, Katrin, Varma, Devika, Schouten, Stefan, Marcel T J van der Meer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stable hydrogen isotopic compositions of long-chain alkenones with 37 carbon atoms (δ2HC37) have been shown to reflect seawater salinity in culture and environmental studies, and this potential sea surface salinity proxy has been applied to several downcore records from different regions. However, previous studies were based solely on a single sediment core and often suggested unlikely large changes in salinity based on existing proxy calibrations. Here we present a new δ2HC37 record, in combination with oxygen isotopes of benthic foraminifera from the same samples, from a sediment core from the Chilean Margin (ODP Site 1235). The observed negative shift in δ2HC37 of 20 ‰ during the last deglaciation was identical to that of a previously published δ2HC37 record from the nearby, but deeper, ODP Site 1234, suggesting a regionally consistent shift in δ2HC37. This change translates into a negative hydrogen isotope shift in the surface seawater of ca. 14 ‰, similar to glacial–interglacial reconstructions based on other δ2HC37 records. The reconstructed bottom seawater oxygen isotope change based on benthic foraminifera during the last deglaciation is approximately -0.8 ‰, in line with previous studies. When translated into hydrogen isotopes of bottom seawater using the modern open-ocean water line, this would suggest a negative change of ca. 5 ‰, smaller than the reconstructed surface seawater shift based on alkenones. The larger change in surface water isotopes suggests that it experienced more freshening during the Holocene than bottom waters, either due to increased freshwater input, reduced evaporation, or a combination of the two.
ISSN:1814-9324
1814-9332
DOI:10.5194/cp-19-1919-2023