Conditions for Existence, Representations, and Computation of Matrix Generalized Inverses

Conditions for the existence and representations of 2-, 1-, and 1,2-inverses which satisfy certain conditions on ranges and/or null spaces are introduced. These representations are applicable to complex matrices and involve solutions of certain matrix equations. Algorithms arising from the introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2017-01, Vol.2017 (2017), p.1-27
Hauptverfasser: Gerontitis, Dimitrios, Stojanović, Igor, Ćirić, Miroslav, Stanimirović, Predrag S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conditions for the existence and representations of 2-, 1-, and 1,2-inverses which satisfy certain conditions on ranges and/or null spaces are introduced. These representations are applicable to complex matrices and involve solutions of certain matrix equations. Algorithms arising from the introduced representations are developed. Particularly, these algorithms can be used to compute the Moore-Penrose inverse, the Drazin inverse, and the usual matrix inverse. The implementation of introduced algorithms is defined on the set of real matrices and it is based on the Simulink implementation of GNN models for solving the involved matrix equations. In this way, we develop computational procedures which generate various classes of inner and outer generalized inverses on the basis of resolving certain matrix equations. As a consequence, some new relationships between the problem of solving matrix equations and the problem of numerical computation of generalized inverses are established. Theoretical results are applicable to complex matrices and the developed algorithms are applicable to both the time-varying and time-invariant real matrices.
ISSN:1076-2787
1099-0526
DOI:10.1155/2017/6429725