Positron Emission Tomography Molecular Imaging of the Major Neurodegenerative Disorders: Overview and Pictorial Essay, from a Nuclear Medicine Center's Perspective
Computed tomography (CT) and magnetic resonance imaging (MRI) provide key structural information on brain pathophysiology. Positron emission tomography (PET) measures metabolism in the living brain; it plays an important role in molecular neuroimaging and is rapidly expanding its field of applicatio...
Gespeichert in:
Veröffentlicht in: | Journal of integrative neuroscience 2023-12, Vol.22 (6), p.172-172 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computed tomography (CT) and magnetic resonance imaging (MRI) provide key structural information on brain pathophysiology. Positron emission tomography (PET) measures metabolism in the living brain; it plays an important role in molecular neuroimaging and is rapidly expanding its field of application to the study of neurodegenerative diseases. Different PET radiopharmaceuticals allow
characterization and quantization of biological processes at the molecular and cellular levels, from which many neurodegenerative diseases develop. In addition, hybrid imaging tools such as PET/CT and PET/MRI support the utility of PET, enabling the anatomical mapping of functional data. In this overview, we describe the most commonly used PET tracers in the diagnostic work-up of patients with Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. We also briefly discuss the pathophysiological processes of tracer uptake in the brain, detailing their specific cellular pathways in clinical cases. This overview is limited to imaging agents already applied in human subjects, with particular emphasis on those tracers used in our department. |
---|---|
ISSN: | 0219-6352 |
DOI: | 10.31083/j.jin2206172 |