Machine Learning and Feature Selection for soil spectroscopy. An evaluation of Random Forest wrappers to predict soil organic matter, clay, and carbonates
Soil spectroscopy estimates soil properties using the absorption features in soil spectra. However, modelling soil properties with soil spectroscopy is challenging due to the high dimensionality of spectral data. Feature Selection wrapper methods are promising approaches to reduce the dimensionality...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-05, Vol.10 (9), p.e30228-e30228, Article e30228 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil spectroscopy estimates soil properties using the absorption features in soil spectra. However, modelling soil properties with soil spectroscopy is challenging due to the high dimensionality of spectral data. Feature Selection wrapper methods are promising approaches to reduce the dimensionality but are barely used in soil spectroscopy. The aim of this study is to evaluate the performance of two feature selection wrapper methods, Sequential Forward Selection (SFS) and Sequential Flotant Forward Selection (SFFS) built using the Random Forest (RF) algorithm, for dimensionality reduction of spectral data and predictive modelling of modelling soil organic matter (SOM), clay and carbonates. The reflectance of 100 soil samples, acquired from Sierra de las Nieves (Spain), was measured under laboratory conditions using ASD FieldSpec Pro JR. Four different datasets were obtained after applying two spectral preprocessing methods to raw spectra: raw spectra, Continuum Removal (CR), Multiplicative Scatter Correction (MSC), and a so-called “Global” dataset composed of raw, CR and MSC features. The performance of RF models built with feature selection methods was compared to that of Partial Least Squares Regression (PLSR) and RF (alone).
RF models built with SFS and SFFS outperformed PLSR and RF alone models: The best RF models with feature selection had a respective ratio of performance to interquartile distance of 1.93, 0.38 and 2.56. PLSR models had an accuracy of 1.41, 0.29 and 1.81 for SOM, carbonates, and clay, respectively. RF alone had a respective performance of 1.29, 0.29 and 1.81. The application of feature selection wrapper methods reduced the number of features to less than 1 % of the starting features. Features were selected across all spectra for SOM and clay, and around 900 nm, 1900 nm, and 2350 nm for carbonates. However, feature selection highlighted features around 1100 nm in SOM modelling, as well as other features around 2200 nm, which is considered a main absorption feature of clay. The application of feature selection with Random Forest was very important in improving modelling accuracy, reducing the redundant features and avoiding the curse of dimensionality or Hughes effect. Thus, this research showed an alternative to dimensionality reduction approaches that have been applied to date to model soil properties with spectroscopy and paves the way for further scientific investigation based on feature selection methods and machine learning.
•Soi |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e30228 |