Reduced Graphene Oxide Nanosheet-Decorated Copper Oxide Nanoparticles: A Potent Antifungal Nanocomposite against Fusarium Root Rot and Wilt Diseases of Tomato and Pepper Plants

Sustainable use of nanotechnology in crop protection requires an understanding of the plant's life cycle, potential toxicological impacts of nanomaterials and their mechanism of action against the target pathogens. Herein, we show some properties of a candidate antifungal nanocomposite made fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-05, Vol.10 (5), p.1001
Hauptverfasser: El-Abeid, Sozan E, Ahmed, Yosra, Daròs, José-Antonio, Mohamed, Mohamed A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sustainable use of nanotechnology in crop protection requires an understanding of the plant's life cycle, potential toxicological impacts of nanomaterials and their mechanism of action against the target pathogens. Herein, we show some properties of a candidate antifungal nanocomposite made from copper oxide (CuO; otherwise an essential soil nutrient) nanoparticles (NPs), with definite size and shape, decorating the surface of reduced graphene oxide (rGO) nanosheets. The successful preparation of the rGO-CuO NPs was confirmed by spectroscopic and microscopic analyses, and its antifungal activity against wild strains of affecting tomato and pepper plants was successfully confirmed. A comparative analysis in vitro indicated that this nanocomposite had higher antifungal activity at only 1 mg/L than the conventional fungicide Kocide 2000 at 2.5 g/L. Further investigation suggested that rGO-CuO NPs creates pits and pores on the fungal cell membranes inducing cell death. results indicated that only 1 mg/L from the nanocomposite is required to reduce Fusarium wilt and root rot diseases severity below 5% for tomato and pepper plants without any phytotoxicity for about 70 days. Comparatively, 2.5 g/L of Kocide 2000 are required to achieve about 30% disease reduction in both plants. The present study contributes to the concept of agro-nanotechnology, showing the properties of a novel ecofriendly and economic nanopesticide for sustainable plant protection.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10051001