Accurate determination of electrical conductance in carbon nanostructures

Electrical characterization of nanostructures, such as nanotubes and wires, is a demanding task that is vital for future applications of nanomaterials. The nanostructures should ideally be analyzed in a free-standing state and also allow for other material characterizations to be made of the same in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2022-03, Vol.9 (3), p.35010
Hauptverfasser: Flygare, Mattias, Svensson, Krister
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical characterization of nanostructures, such as nanotubes and wires, is a demanding task that is vital for future applications of nanomaterials. The nanostructures should ideally be analyzed in a free-standing state and also allow for other material characterizations to be made of the same individual nanostructures. Several methods have been used for electrical characterizations of carbon nanotubes in the past. The results are widely spread, both between different characterizations methods and within the same materials. This raises questions regarding the reliability of different methods and their accuracy, and there is a need for a measurement standard and classification scheme for carbon nanotube materials. Here we examine a two-probe method performed inside a transmission electron microscope in detail, addressing specifically the accuracy by which the electrical conductivity of individual carbon nanotubes can be determined. We show that two-probe methods can be very reliable using a suitable thermal cleaning method of the contact points. The linear resistance of the outermost nanotube wall can thus be accurately determined even for the highest crystallinity materials, where the linear resistance is only a few kΩ/μm. The method can thereby by used as a valuable tool for future classification schemes of various nanotube material classes.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/ac5e21