The Path to Type-II Superconductivity

Following the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, research concentrated on the electric conductivity of the materials investigated. Then, it was Max von Laue who in the early 1930s turned his attention to the magnetic properties of superconductors, such as their demagne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2019-06, Vol.9 (6), p.682
1. Verfasser: Huebener, Rudolf P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, research concentrated on the electric conductivity of the materials investigated. Then, it was Max von Laue who in the early 1930s turned his attention to the magnetic properties of superconductors, such as their demagnetizing effects in a weak magnetic field. As a consultant at the Physikalisch-Technische Reichsanstalt in Berlin, von Laue was in close contact with Walther Meissner at the Reichsanstalt. In 1933, Meisner together with Robert Ochsenfeld discovered the perfect diamagnetism of superconductors (Meissner–Ochsenfeld effect). This was a turning point, indicating that superconductivity represents a thermodynamic equilibrium state and leading to the London theory and the Ginzburg–Landau theory. In the early 1950s in Moscow, Nikolay Zavaritzkii carried out experiments on superconducting thin films. In the theoretical analysis of his experiments, he collaborated with Alexei A. Abrikosov and for the first time they considered the possibility that the coherence length ξ can be smaller than the magnetic penetration depth λ m . They called these materials the “second group”. Subsequently, Abrikosov discovered the famous Abrikosov vortex lattice and the superconducting mixed state. The important new field of type-II superconductivity was born.
ISSN:2075-4701
2075-4701
DOI:10.3390/met9060682