Regularities of the theory of quasi-geodesic mappings of special parabolic spaces
We study quasi-geodesic mappings (QGM) of generalized-recurrent-parabolic spaces f: (Vn, gij, Fih) → (V'n, g'ij, Fih). QGM can be of two types: general and canonical. This article examines the QGM of the general type. Earlier, we considered the fundamental questions of the theory of QGM of...
Gespeichert in:
Veröffentlicht in: | Trudy Meždunarodnogo geometričeskogo centra 2025-01, Vol.17 (3), p.256-271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study quasi-geodesic mappings (QGM) of generalized-recurrent-parabolic spaces f: (Vn, gij, Fih) → (V'n, g'ij, Fih). QGM can be of two types: general and canonical. This article examines the QGM of the general type. Earlier, we considered the fundamental questions of the theory of QGM of generalized-recurrent-parabolic spaces. We proved theorems that allow for any generalized-recurrent-parabolic space (Vn, gij, Fih) to either find all spaces (V'n, g'_{ij}, Fih) on which Vn admits QGM of the general form, or prove that there are no such spaces. In this article, we constructed a Γ-transformation that makes it possible to obtain from a pair of generalized-recurrent-parabolic spaces that are in a quasi-geodesic mapping, an infinite sequence of pairs of other generalized-recurrent-parabolic spaces, which are also in a quasi-geodesic mapping. |
---|---|
ISSN: | 2072-9812 2409-8906 |
DOI: | 10.15673/pigc.v17i3.2781 |