Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy data
Diagnostic evidence of the accuracy of a test for identifying a target condition of interest can be estimated using systematic approaches following standardized methodologies. Statistical methods for the meta-analysis of diagnostic test accuracy (DTA) studies are relatively complex, presenting a cha...
Gespeichert in:
Veröffentlicht in: | BMC medical research methodology 2022-11, Vol.22 (1), p.306-8, Article 306 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diagnostic evidence of the accuracy of a test for identifying a target condition of interest can be estimated using systematic approaches following standardized methodologies. Statistical methods for the meta-analysis of diagnostic test accuracy (DTA) studies are relatively complex, presenting a challenge for reviewers without extensive statistical expertise. In 2006, we developed Meta-DiSc, a free user-friendly software to perform test accuracy meta-analysis. This statistical program is now widely used for performing DTA meta-analyses. We aimed to build a new version of the Meta-DiSc software to include statistical methods based on hierarchical models and an enhanced web-based interface to improve user experience.
In this article, we present the updated version, Meta-DiSc 2.0, a web-based application developed using the R Shiny package. This new version implements recommended state-of-the-art statistical models to overcome the limitations of the statistical approaches included in the previous version. Meta-DiSc 2.0 performs statistical analyses of DTA reviews using a bivariate random effects model. The application offers a thorough analysis of heterogeneity, calculating logit variance estimates of sensitivity and specificity, the bivariate I-squared, the area of the 95% prediction ellipse, and the median odds ratios for sensitivity and specificity, and facilitating subgroup and meta-regression analyses. Furthermore, univariate random effects models can be applied to meta-analyses with few studies or with non-convergent bivariate models. The application interface has an intuitive design set out in four main menus: file upload; graphical description (forest and ROC plane plots); meta-analysis (pooling of sensitivity and specificity, estimation of likelihood ratios and diagnostic odds ratio, sROC curve); and summary of findings (impact of test through downstream consequences in a hypothetical population with a given prevalence). All computational algorithms have been validated in several real datasets by comparing results obtained with STATA/SAS and MetaDTA packages.
We have developed and validated an updated version of the Meta-DiSc software that is more accessible and statistically sound. The web application is freely available at www.metadisc.es . |
---|---|
ISSN: | 1471-2288 1471-2288 |
DOI: | 10.1186/s12874-022-01788-2 |