Characterization, Stability and Biological Activity In Vitro of Cathelicidin-BF-30 Loaded 4-Arm Star-Shaped PEG-PLGA Microspheres

BF-30 is a single chain polypeptide of an N-segment with an α-helix from cathelicidin gene encoding, and it contains 30 amino acid residues, with a relative molecular mass and isoelectric point of 3637.54 and 11.79, respectively. Cathelicidin-BF-30 was entrapped in four-arm star-shaped poly(ethylene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2018-02, Vol.23 (2), p.497
Hauptverfasser: Bao, Yueli, Wang, Shanrong, Li, Hongli, Wang, Yunjiao, Chen, Haiyun, Yuan, Minglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BF-30 is a single chain polypeptide of an N-segment with an α-helix from cathelicidin gene encoding, and it contains 30 amino acid residues, with a relative molecular mass and isoelectric point of 3637.54 and 11.79, respectively. Cathelicidin-BF-30 was entrapped in four-arm star-shaped poly(ethylene glycol-b-dl-lactic acid-co-glycolic acid) block copolymers (4-arm-PEG-PLGA) by a double-emulsion solvent-evaporation method. Three release phases of cathelicidin-BF-30loaded 4-arm-PEG-PLGA microspheres were observed, including an initial burst-release phase, followed by a lag phase with minimal drug release and finally a secondary zero-order release phase. The delivery system released BF-30 over more than 15 days in vitro. Furthermore, the material for preparing the microspheres has good biocompatibility and biodegradability. Additionally, based on the drug resistance of food pathogenic bacteria, the antibacterial effects of BF-30 on ( ), ( ) and ( ) as well as the stability of the in vitro release of the BF-30-loded microspheres were studied. The α-helix secondary structure and antibacterial activity of released BF-30 were retained and compared with native peptide. These BF-30 loaded microspheres presented
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules23020497