Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers

HgTe/CdHgTe quantum well (QW) heterostructures have attracted a lot of interest recently due to insights they provided towards the physics of topological insulators and massless Dirac fermions. Our work focuses on HgCdTe QWs with the energy spectrum close to the graphene-like relativistic dispersion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-07, Vol.11 (7), p.1855
Hauptverfasser: Rumyantsev, Vladimir V., Razova, Anna A., Bovkun, Leonid S., Tatarskiy, Dmitriy A., Mikhailovskii, Vladimir Y., Zholudev, Maksim S., Ikonnikov, Anton V., Uaman Svetikova, Tatyana A., Maremyanin, Kirill V., Utochkin, Vladimir V., Fadeev, Mikhail A., Remesnik, Vladimir G., Aleshkin, Vladimir Y., Mikhailov, Nikolay N., Dvoretsky, Sergey A., Potemski, Marek, Orlita, Milan, Gavrilenko, Vladimir I., Morozov, Sergey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HgTe/CdHgTe quantum well (QW) heterostructures have attracted a lot of interest recently due to insights they provided towards the physics of topological insulators and massless Dirac fermions. Our work focuses on HgCdTe QWs with the energy spectrum close to the graphene-like relativistic dispersion that is supposed to suppress the non-radiative Auger recombination. We combine various methods such as photoconductivity, photoluminescence and magneto-optical measurements as well as transmission electron microscopy to retrofit growth parameters in multi-QW waveguide structures, designed for long wavelengths lasing in the range of 10–22 μm. The results reveal that the attainable operating temperatures and wavelengths are strongly dependent on Cd content in the QW, since it alters the dominating recombination mechanism of the carriers.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11071855