Completing simple partial k-Latin squares
We study the completion problem for simple k-Latin rectangles, which are a special case of the generalized latin rectangles studied for which embedding theorems are given by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete Mathematics 31(3). Here an alternative pr...
Gespeichert in:
Veröffentlicht in: | Atti della Accademia peloritana dei pericolanti. Classe I di scienze fis., mat. e naturali mat. e naturali, 2018-01, Vol.96 (S2), p.A4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the completion problem for simple k-Latin rectangles, which are a special case of the generalized latin rectangles studied for which embedding theorems are given by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete Mathematics 31(3). Here an alternative proof of those theorems are given for k-Latin rectangles in the “simple” case. More precisely, generalizing two classic results on the completability of partial Latin squares, we prove the necessary and suffisucient conditions for a completion of a simple m x n k-Latin rectangle to a simple k-Latin square of order n and we show that if m ≤ n/2, any simple partial k-Latin square P of order m embeds in a simple k-Latin square L of order n. |
---|---|
ISSN: | 0365-0359 1825-1242 |
DOI: | 10.1478/AAPP.96S2A4 |