Completing simple partial k-Latin squares

We study the completion problem for simple k-Latin rectangles, which are a special case of the generalized latin rectangles studied for which embedding theorems are given by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete Mathematics 31(3). Here an alternative pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atti della Accademia peloritana dei pericolanti. Classe I di scienze fis., mat. e naturali mat. e naturali, 2018-01, Vol.96 (S2), p.A4
Hauptverfasser: Nicholas Cavenagh, Giovanni Lo Faro, Antoinette Tripodi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the completion problem for simple k-Latin rectangles, which are a special case of the generalized latin rectangles studied for which embedding theorems are given by Andersen and Hilton (1980) in “Generalized Latin rectangles II: Embedding”, Discrete Mathematics 31(3). Here an alternative proof of those theorems are given for k-Latin rectangles in the “simple” case. More precisely, generalizing two classic results on the completability of partial Latin squares, we prove the necessary and suffisucient conditions for a completion of a simple m x n k-Latin rectangle to a simple k-Latin square of order n and we show that if m ≤ n/2, any simple partial k-Latin square P of order m embeds in a simple k-Latin square L of order n.
ISSN:0365-0359
1825-1242
DOI:10.1478/AAPP.96S2A4