Strategies towards Cost Reduction in the Manufacture of Printable Perovskite Solar Modules

Among different perovskite solar cell architectures, the carbon-based perovskite solar cell (C-PSC) is a promising candidate for upscaling and commercialization related to low-cost components and simple manufacturing methods. For upscaling a PV technology, three parameters must be considered, corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-01, Vol.15 (2), p.641
Hauptverfasser: Pourjafari, Dena, Meroni, Simone M. P., Peralta Domínguez, Diecenia, Escalante, Renán, Baker, Jenny, Saadi Monroy, Alessary, Walters, Adrian, Watson, Trystan, Oskam, Gerko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among different perovskite solar cell architectures, the carbon-based perovskite solar cell (C-PSC) is a promising candidate for upscaling and commercialization related to low-cost components and simple manufacturing methods. For upscaling a PV technology, three parameters must be considered, corresponding to efficiency, stability, and cost. While the efficiency and lifetime of perovskite technology are the focus of many research groups, the cost parameter is less studied. This work aims to provide information on the manufacturing cost of C-PSC based on experimental data in order to give the readers a panoramic overview of parameters influencing a fabrication process. To analyze the commercialization viability of this technology, we estimated the cost of raw materials and the manufacturing process for sub-modules using two different methods: registration and scribing. The fabrication cost of a sub-module fabricated using the scribing method with 7.9% efficiency was approximately 44% less than that of a device with 6.8% efficiency prepared using registration. We demonstrated that this is due to both the design parameters and performance. In addition, we showed a 51% cost reduction for registration devices by appropriate choice of solar cell components, fabrication steps, and equipment based on the existing infrastructures for the manufacturing of large-scale devices.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15020641