Integrated metasurfaces on silicon photonics for emission shaping and holographic projection
The emerging applications of silicon photonics in free space, such as LiDARs, free-space optical communications, and quantum photonics, urge versatile emission shaping beyond the capabilities of conventional grating couplers. In these applications, silicon photonic chips deliver free-space emission...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2022-12, Vol.11 (21), p.4687-4695 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emerging applications of silicon photonics in free space, such as LiDARs, free-space optical communications, and quantum photonics, urge versatile emission shaping beyond the capabilities of conventional grating couplers. In these applications, silicon photonic chips deliver free-space emission to detect or manipulate external objects. Light needs to emit from a silicon photonic chip to the free space with specific spatial modes, which produce focusing, collimation, orbital angular momentum, or even holographic projection. A platform that offers versatile shaping of free-space emission, while maintaining the CMOS compatibility and monolithic integration of silicon photonics is in pressing need. Here we demonstrate a platform that integrates metasurfaces monolithically on silicon photonic integrated circuits. The metasurfaces consist of amorphous silicon nanopillars evanescently coupled to silicon waveguides. We demonstrate experimentally diffraction-limited beam focusing with a Strehl ratio of 0.82. The focused spot can be switched between two positions by controlling the excitation direction. We also realize a meta-hologram experimentally that projects an image above the silicon photonic chip. This platform can add a highly versatile interface to the existing silicon photonic ecosystems for precise delivery of free-space emission. |
---|---|
ISSN: | 2192-8614 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2022-0344 |