SIRT5 induces autophagy and alleviates myocardial infarction via desuccinylation of TOM1

Myocardial infarction (MI) is a prevalent form of ischemic heart disease, significantly contributing to heart disease-related deaths worldwide. This condition is primarily caused by myocardial ischemic-reperfusion injury (MIRI). Sirtuin 5 (SIRT5) is a desuccinylase known for its ability to reduce pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cardiovascular disorders 2024-08, Vol.24 (1), p.464-11, Article 464
Hauptverfasser: Li, Zengliang, Zheng, Zihe, Dai, Xiaofu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myocardial infarction (MI) is a prevalent form of ischemic heart disease, significantly contributing to heart disease-related deaths worldwide. This condition is primarily caused by myocardial ischemic-reperfusion injury (MIRI). Sirtuin 5 (SIRT5) is a desuccinylase known for its ability to reduce protein succinylation. Recent studies have highlighted the potential role of SIRT5 in various human diseases, including MIRI. This study aims to investigate the specific role of SIRT5 in modulating autophagy and cardiomyocyte death in a MIRI model, as well as to identify the downstream protein targets of SIRT5. Initially, we established a hypoxia/reoxygenation (H/R)-induced MIRI cell model to measure SIRT5 expression and assess its functions. Our results indicated that H/R induction led to a downregulation of SIRT5 expression, decreased autophagy, and increased cell death. Notably, overexpression of SIRT5 effectively promoted autophagy and inhibited cell death in the MIRI cell model. Mechanistically, SIRT5 was found to directly interact with the target of myb1 membrane trafficking protein (TOM1) at the K48 site, inducing its desuccinylation and stabilization. Further rescue assays revealed that TOM1 knockdown reversed the changes in autophagy and apoptosis caused by SIRT5 overexpression in the MIRI cell model. In vivo experiments demonstrated that SIRT5 alleviated myocardial injury in MI models. In conclusion, this study uncovers the role of SIRT5-mediated desuccinylation of TOM1 in regulating autophagy-related cell death in MIRI, providing new insights into potential therapeutic strategies for MI.
ISSN:1471-2261
1471-2261
DOI:10.1186/s12872-024-04120-6