Architecture and Data Knowledge of the Regional Data Center for Intelligent Agriculture

The main task of the National Research Program “Smart crop production”, supported by the Ministry of Education and Science of Bulgaria and approved by the Council of Ministers, is the development of a regional data center to facilitate the work of farmers. The regional data center is part of the imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2023-04, Vol.14 (4), p.233
Hauptverfasser: Doychev, Emil, Terziyski, Atanas, Tenev, Stoyan, Stoyanova-Doycheva, Asya, Ivanova, Vanya, Atanasova, Pepa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main task of the National Research Program “Smart crop production”, supported by the Ministry of Education and Science of Bulgaria and approved by the Council of Ministers, is the development of a regional data center to facilitate the work of farmers. The regional data center is part of the implementation of a smart crop production environment called ZEMEL which provides personal assistants supporting the work of farmers. The environment provides intelligent services for crop analysis and prevention and assists farmers in performing basic tasks related to crop production. The objective of the proposed article is to present the implementation of the architecture, infrastructure, and data architecture of a regional data center in the Plovdiv region. In order to clearly present the results of this work, which are the architectural and physical implementations of a regional data center and the storage of dynamic data and background knowledge, a methodology consisting of several steps is followed: the system infrastructure of the data center and the data architecture are discussed; one of the local pieces of infrastructure, implemented in the Institute of Plant Genetic Resources (IPGR) in the town of Sadovo in the Plovdiv region, is presented in detail, including the different types of sensors and their connection to the data center in wheat cultivation; the data repositories are discussed where dynamic data and background knowledge are stored. The paper pays special attention to background knowledge developed as ontologies for winter wheat cultivation. The results are summarized by drawing some conclusions and recommendations for the design of the local infrastructure of the center and the stored data to improve its performance.
ISSN:2078-2489
2078-2489
DOI:10.3390/info14040233