Exercise preconditioning inhibits doxorubicin-induced cardiotoxicity via YAP/STAT3 signaling
Doxorubicin (DOX) possesses strong anti-tumor effects but is limited by its irreversible cardiac toxicity. The relationship between exercise, a known enhancer of cardiovascular health, and DOX-induced cardiotoxicity has been a focus of recent research. Exercise has been suggested to mitigate DOX...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-03, Vol.10 (6), p.e27035-e27035, Article e27035 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doxorubicin (DOX) possesses strong anti-tumor effects but is limited by its irreversible cardiac toxicity. The relationship between exercise, a known enhancer of cardiovascular health, and DOX-induced cardiotoxicity has been a focus of recent research. Exercise has been suggested to mitigate DOX's cardiac harm by modulating the Yes-associated protein (YAP) and Signal transducer and activator of transcription 3 (STAT3) pathways, which are crucial in regulating cardiac cell functions and responses to damage. This study aimed to assess the protective role of exercise preconditioning against DOX-induced cardiac injury. We used Sprague–Dawley rats, divided into five groups (control, DOX, exercise preconditioning (EP), EP-DOX, and verteporfin + EP + DOX), to investigate the potential mechanisms. Our findings, including echocardiography, histological staining, Western blot, and q-PCR analysis, demonstrated that exercise preconditioning could alleviate DOX-induced cardiac dysfunction and structural damage. Notably, exercise preconditioning enhanced the nuclear localization and co-localization of YAP and STAT3. Our study suggests that exercise preconditioning may counteract DOX-induced cardiotoxicity by activating the YAP/STAT3 pathway, highlighting a potential therapeutic approach for reducing DOX's cardiac side effects. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e27035 |