The short peptide encoded by long non-coding RNA RNF217-AS1 inhibits stomach cancer tumorigenesis, macrophage recruitment, and pro-inflammatory responses
Certain long non-coding RNAs (lncRNAs) have potential peptide-coding abilities. Here, the role and molecular basis of the RNF217-AS1-encoded peptide in stomach cancer (SC) tumorigenesis were explored. Here, lncRNAs associated with SC pathogenesis and macrophage infiltration and lncRNAs with peptide-...
Gespeichert in:
Veröffentlicht in: | Amino acids 2024-07, Vol.56 (1), p.45-13, Article 45 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Certain long non-coding RNAs (lncRNAs) have potential peptide-coding abilities. Here, the role and molecular basis of the RNF217-AS1-encoded peptide in stomach cancer (SC) tumorigenesis were explored. Here, lncRNAs associated with SC pathogenesis and macrophage infiltration and lncRNAs with peptide-coding potential were searched by bioinformatics analysis. The gene mRNA and protein levels were examined by RT-qPCR and western blot assays, respectively. Cell viability, migratory, and invasive abilities were measured by CCK-8, Transwell migration, and Transwell invasion assays, respectively. The potential biological processes related to lncRNA RNF217-AS1 were identified by single-gene GSEA analysis. The effect of RNF217-AS1-encoded peptide on SC tumorigenesis was examined by mouse xenograft experiments. The results showed that lncRNA NR2F1-AS1 and RNF217-AS1 were differentially expressed and associated with macrophage infiltration in SC, and they had the ability to translate into short peptides. The RNF217-AS1 ORF-encoded peptide could reduce SC cell viability, inhibit cell migration and invasion, as well as hinder the development of SC xenograft tumors. The RNF217-AS1 ORF-encoded peptide in human SC AGS cells suppressed THP-1 cell migration, triggered the differential expression of CXCL1/CXCL2/CXCL8/CXCL12, and inactivated the TLR4/NF-κB/STAT1 signaling pathways. As a conclusion, the RNF217-AS1 ORF-encoded peptide hindered SC progression in vitro and in vivo and suppressed macrophage recruitment and pro-inflammatory responses in SC. |
---|---|
ISSN: | 1438-2199 0939-4451 1438-2199 |
DOI: | 10.1007/s00726-024-03404-7 |