Blood-based metabolic signatures in Alzheimer's disease

Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. We included 127 Alzheimer's disease (AD) patients and 121 control subjects with cerebrospinal fluid biomarker-confirmed diagnosis (cutoff tau/amyloid β peptide 42: 0.52). Mass spectrometry platfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia : diagnosis, assessment & disease monitoring assessment & disease monitoring, 2017, Vol.8 (1), p.196-207
Hauptverfasser: de Leeuw, Francisca A., Peeters, Carel F.W., Kester, Maartje I., Harms, Amy C., Struys, Eduard A., Hankemeier, Thomas, van Vlijmen, Herman W.T., van der Lee, Sven J., van Duijn, Cornelia M., Scheltens, Philip, Demirkan, Ayşe, van de Wiel, Mark A., van der Flier, Wiesje M., Teunissen, Charlotte E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. We included 127 Alzheimer's disease (AD) patients and 121 control subjects with cerebrospinal fluid biomarker-confirmed diagnosis (cutoff tau/amyloid β peptide 42: 0.52). Mass spectrometry platforms determined the concentrations of 53 amine compounds, 22 organic acid compounds, 120 lipid compounds, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified five hubs of metabolic dysregulation: tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2, and platelet-activating factor C16:0. The metabolite network for apolipoprotein E (APOE) ε4 negative AD patients was less cohesive compared with the network for APOE ε4 positive AD patients. Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD. •Multiple metabolic signatures point to peripheral AD markers for future validation.•AD may be described by changes in the metabolism of amines and oxidative stressors.•APOE ε4-driven AD and non- APOE ε4-driven AD represent different biochemical pathways.•Network analyses of metabolomics data enable the study of metabolic changes in AD.
ISSN:2352-8729
2352-8729
DOI:10.1016/j.dadm.2017.07.006