An Excited State Intramolecular Proton Transfer-Based Fluorescent Probe with a Large Stokes Shift for the Turn-on Detection of Cysteine: A Detailed Theoretical Exploration
DFT and TDDFT calculations are adopted to study the sensing mechanism of a turn-on-type cysteine fluorescent probe (2-(1-phenyl-imidazo[1,5-α]pyridine-3-yl)phenyl acrylate, denoted as MZC-AC). The photoinduced electron transfer (PET) process of MZC-AC and the excited state intramolecular proton t...
Gespeichert in:
Veröffentlicht in: | ACS omega 2020-08, Vol.5 (31), p.19695-19701 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DFT and TDDFT calculations are adopted to study the sensing mechanism of a turn-on-type cysteine fluorescent probe (2-(1-phenyl-imidazo[1,5-α]pyridine-3-yl)phenyl acrylate, denoted as MZC-AC). The photoinduced electron transfer (PET) process of MZC-AC and the excited state intramolecular proton transfer (ESIPT) process of MZC have been investigated in detail. We demonstrate that the fluorescence quenching of MZC-AC is ascribed to the PET mechanism and the large Stokes shift fluorescence emission of MZC is the result of the ESIPT mechanism. The results have been cross-validated by geometries, frontier molecular orbital analysis, and potential energy curve scanning. As a result, our calculations completely reproduce the experimental results and give powerful evidence for the sensing mechanism of MZC-AC for cysteine. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c02393 |