Different Responses of Soil Bacterial and Fungal Communities to 3 Years of Biochar Amendment in an Alkaline Soybean Soil

Biochar as a soil amendment has been regarded as a promising way to improve soil fertility. However, the response of microbial community after biochar and biochar compound fertilizer (BCF) application has not been thoroughly elucidated. This study evaluated the changes in abundance and composition o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2021-05, Vol.12, p.630418-630418
Hauptverfasser: Gao, Wenhui, Gao, Ke, Guo, Zonghao, Liu, Yuan, Jiang, Li, Liu, Cheng, Liu, Xiaoyu, Wang, Guangli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biochar as a soil amendment has been regarded as a promising way to improve soil fertility. However, the response of microbial community after biochar and biochar compound fertilizer (BCF) application has not been thoroughly elucidated. This study evaluated the changes in abundance and composition of bacterial and fungal communities using quantitative real-time PCR (qPCR) and Illumina MiSeq amplicon sequencing. The field experiment ran for 3 years and comprised five treatments: chemical fertilizer as control (CK), straw-returning combined with chemical fertilizer (CS), low biochar application combined with chemical fertilizer (LB), high biochar application combined with chemical fertilizer (HB) and BCF. The results showed that biochar amendment results no changes in the abundance and diversity of bacteria in the bulk and rhizosphere soils. However, the abundance of soil fungi was significantly increased by biochar amendment (LB and HB). LB treatment significantly increased the fungal alpha diversity, while there was no significant change under HB. Furthermore, the dominant bacterial phyla found in the samples were Proteobacteria , Actinobacteria , and Acidobacteria . Biochar addition increased the relative abundance of Actinobacteria in both bulk and rhizosphere soils. The dominant fungal phyla were Ascomycota , Mortierellomycota , and Basidiomycota . The relative abundance of Ascomycota significantly decreased, but Mortierellomycota significantly increased in LB and HB. In addition, redundancy analysis indicated that the changes in bacterial and fungal communities are associated with soil properties such as SOC and TN, which are crucial contributors in regulating the community composition. This study is expected to provide significant theoretical and practical knowledge for the application of biochar in agricultural ecosystem.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2021.630418