Differential Investment Strategies in Leaf Economic Traits Across Climate Regions Worldwide

The leaf economics spectrum (LES) is the leading theory of plant ecological strategies based on functional traits, which explains the trade-off between dry matter investment in leaf structure and the potential rate of resource return, revealing general patterns of leaf economic traits investment for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2022-03, Vol.13, p.798035
Hauptverfasser: Ren, Liang, Huang, Yongmei, Pan, Yingping, Xiang, Xiang, Huo, Jiaxuan, Meng, Dehui, Wang, Yuanyuan, Yu, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The leaf economics spectrum (LES) is the leading theory of plant ecological strategies based on functional traits, which explains the trade-off between dry matter investment in leaf structure and the potential rate of resource return, revealing general patterns of leaf economic traits investment for different plant growth types, functional types, or biomes. Prior work has revealed the moderating role of different environmental factors on the LES, but whether the leaf trait bivariate relationships are shifted across climate regions or across continental scales requires further verification. Here we use the Köppen-Geiger climate classification, a very widely used and robust criterion, as a basis for classifying climate regions to explore climatic differences in leaf trait relationships. We compiled five leaf economic traits from a global dataset, including leaf dry matter content (LDMC), specific leaf area (SLA), photosynthesis per unit of leaf dry mass (A ), leaf nitrogen concentration (N ), and leaf phosphorus concentration (P ). Moreover, we primarily used the standardized major axis (SMA) analysis to establish leaf trait bivariate relationships and to explore differences in trait relationships across climate regions as well as intercontinental differences within the same climate type. Leaf trait relationships were significantly correlated across almost all subgroups ( < 0.001). However, there was no common slope among different climate zones or climate types and the slopes of the groups fluctuated sharply up and down from the global estimates. The range of variation in the SMA slope of each leaf relationship was as follows: LDMC-SLA relationships (from -0.84 to -0.41); A -SLA relationships (from 0.83 to 1.97); A -N relationships (from 1.33 to 2.25); N -P relationships (from 0.57 to 1.02). In addition, there was significant slope heterogeneity among continents within the Steppe climate (BS) or the Temperate humid climate (Cf). The shifts of leaf trait relationships in different climate regions provide evidence for environmentally driven differential plant investment in leaf economic traits. Understanding these differences helps to better calibrate various plant-climate models and reminds us that smaller-scale studies may need to be carefully compared with global studies.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2022.798035