The Role of Immunohistochemistry as a Surrogate Marker in Molecular Subtyping and Classification of Bladder Cancer
Bladder cancer (BC) is a highly heterogeneous disease, presenting clinical challenges, particularly in predicting patient outcomes and selecting effective treatments. Molecular subtyping has emerged as an essential tool for understanding the biological diversity of BC; however, its implementation in...
Gespeichert in:
Veröffentlicht in: | Diagnostics (Basel) 2024-11, Vol.14 (22), p.2501 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bladder cancer (BC) is a highly heterogeneous disease, presenting clinical challenges, particularly in predicting patient outcomes and selecting effective treatments. Molecular subtyping has emerged as an essential tool for understanding the biological diversity of BC; however, its implementation in clinical practice remains limited due to the high costs and complexity of genomic techniques. This review examines the role of immunohistochemistry (IHC) as a surrogate marker for molecular subtyping in BC, highlighting its potential to bridge the gap between advanced molecular classifications and routine clinical application; Methods: We explore the evolution of taxonomic classification in BC, with a particular focus on cytokeratin (KRT) expression patterns in normal urothelium, which are key to identifying basal and luminal subtypes. Furthermore, we emphasise the need for consensus on IHC markers to reliably define these subtypes, facilitating wider and standardised clinical use. The review also analyses the application of IHC in both muscle-invasive (MIBC) and non-muscle-invasive bladder cancer (NMIBC), with particular attention to the less extensively studied NMIBC cases. We discuss the practical advantages of IHC for subtyping, including its cost effectiveness and feasibility in standard pathology laboratories, alongside ongoing challenges such as the requirement for standardised protocols and external validation across diverse clinical settings; Conclusions: While IHC has limitations, it offers a viable alternative for laboratories lacking access to advanced molecular techniques. Further research is required to determine the optimal combination of markers, establish a consensus diagnostic algorithm, and validate IHC through large-scale trials. This will ultimately enhance diagnostic accuracy, guide treatment decisions, and improve patient outcomes. |
---|---|
ISSN: | 2075-4418 2075-4418 |
DOI: | 10.3390/diagnostics14222501 |