Comparative analysis and evaluation of wild and cultivated Radix Fici Simplicissimae using an UHPLC-Q-Orbitrap mass spectrometry-based metabolomics approach
Radix Fici Simplicissimae (RFS) is widely studied, and is in demand for its value in medicines and food products, with increased scientific focus on its cultivation and breeding. We used ultra-high-performance liquid chromatography quadrupole-orbitrap mass spectrometry-based metabolomics to elucidat...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-03, Vol.14 (1), p.7421-7421, Article 7421 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radix Fici Simplicissimae
(RFS) is widely studied, and is in demand for its value in medicines and food products, with increased scientific focus on its cultivation and breeding. We used ultra-high-performance liquid chromatography quadrupole-orbitrap mass spectrometry-based metabolomics to elucidate the similarities and differences in phytochemical compositions of wild
Radix Fici Simplicissimae
(WRFS) and cultivated
Radix Fici Simplicissimae
(CRFS). Untargeted metabolomic analysis was performed with multivariate statistical analysis and heat maps to identify the differences. Eighty one compounds were identified from WRFS and CRFS samples. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that mass spectrometry could effectively distinguish WRFS from CRFS. Among these, 17 potential biomarkers with high metabolic contents could distinguish between the two varieties, including seven phenylpropanoids, three flavonoids, one flavonol, one alkaloid, one glycoside, and four organic acids. Notably, psoralen, apigenin, and bergapten, essential metabolites that play a substantial pharmacological role in RFS, are upregulated in WRFS. WRFS and CRFS are rich in phytochemicals and are similar in terms of the compounds they contain. These findings highlight the effects of different growth environments and drug varieties on secondary metabolite compositions and provide support for targeted breeding for improved CRFS varieties. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-58078-8 |