Multidimensional singular lambda-lemma
The well known $lambda$-Lemma [3] states the following: Let $f$ be a $C^1$-diffeomorphism of $mathbb{R}^n$ with a hyperbolic fixed point at $0$ and $m$- and $p$-dimensional stable and unstable manifolds $W^S$ and $W^U$, respectively ($m+p=n$). Let $D$ be a $p$-disk in $W^U$ and $w$ be another $p$-di...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2003-04, Vol.2003 (38), p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The well known $lambda$-Lemma [3] states the following: Let $f$ be a $C^1$-diffeomorphism of $mathbb{R}^n$ with a hyperbolic fixed point at $0$ and $m$- and $p$-dimensional stable and unstable manifolds $W^S$ and $W^U$, respectively ($m+p=n$). Let $D$ be a $p$-disk in $W^U$ and $w$ be another $p$-disk in $W^U$ meeting $W^S$ at some point $A$ transversely. Then $igcup_{ngeq 0} f^n(w)$ contains $p$-disks arbitrarily $C^1$-close to $D$. In this paper we will show that the same assertion still holds outside of an arbitrarily small neighborhood of $0$, even in the case of non-transverse homoclinic intersections with finite order of contact, if we assume that $0$ is a low order non-resonant point. |
---|---|
ISSN: | 1072-6691 |