Content-based image retrieval using a signature graph and a self-organizing map
In order to effectively retrieve a large database of images, a method of creating an image retrieval system CBIR (contentbased image retrieval) is applied based on a binary index which aims to describe features of an image object of interest. This index is called the binary signature and builds inpu...
Gespeichert in:
Veröffentlicht in: | International journal of applied mathematics and computer science 2016-06, Vol.26 (2), p.423-438 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to effectively retrieve a large database of images, a method of creating an image retrieval system CBIR (contentbased image retrieval) is applied based on a binary index which aims to describe features of an image object of interest. This index is called the binary signature and builds input data for the problem of matching similar images. To extract the object of interest, we propose an image segmentation method on the basis of low-level visual features including the color and texture of the image. These features are extracted at each block of the image by the discrete wavelet frame transform and the appropriate color space. On the basis of a segmented image, we create a binary signature to describe the location, color and shape of the objects of interest. In order to match similar images, we provide a similarity measure between the images based on binary signatures. Then, we present a CBIR model which combines a signature graph and a self-organizing map to cluster and store similar images. To illustrate the proposed method, experiments on image databases are reported, including COREL,Wang and MSRDI. |
---|---|
ISSN: | 2083-8492 1641-876X 2083-8492 |
DOI: | 10.1515/amcs-2016-0030 |