Positive ground state solutions for a class of fractional coupled Choquard systems
In this paper, we combine the critical point theory and variational method to investigate the following a class of coupled fractional systems of Choquard type \begin{document}$ \begin{equation*} \left\{ \begin{array}{l} (-\Delta)^{s}u+\lambda_{1}u& = (I_{\alpha}*|u|^{p})|u|^{p-2}u+\beta v \qua...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2023-01, Vol.8 (7), p.15789-15804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we combine the critical point theory and variational method to investigate the following a class of coupled fractional systems of Choquard type
\begin{document}$ \begin{equation*} \left\{ \begin{array}{l} (-\Delta)^{s}u+\lambda_{1}u& = (I_{\alpha}*|u|^{p})|u|^{p-2}u+\beta v \quad &&\text{in}\\ \mathbb{R}^{N}, \ (-\Delta)^{s}v+\lambda_{2}v& = (I_{\alpha}*|v|^{p})|v|^{p-2}v+\beta u \quad &&\text{in}\ \mathbb{R}^{N}, \end{array} \right. \end{equation*} $\end{document}
with $ s\in(0, 1), \ N\geq 3, \ \alpha\in(0, N), \ p > 1 $, $ \lambda_{i} > 0 $ are constants for $ i = 1, \ 2 $, $ \beta > 0 $ is a parameter, and $ I_{\alpha}(x) $ is the Riesz Potential. We prove the existence and asymptotic behaviour of positive ground state solutions of the systems by using constrained minimization method and Hardy-Littlewood-Sobolev inequality. Moreover, nonexistence of nontrivial solutions is also obtained. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2023806 |