Carbon Stock Assessment in Gypsum-Bearing Soils: The Role of Subsurface Soil Horizons

With the aim of contributing to the knowledge of soil organic carbon stocks in dry areas, this work is based on a quantification of SOC stocks in gypsum-bearing soils whose vertical and spatial heterogeneity greatly limits inferring the total SOC stocks solely from soil surface information. Public d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth (Basel, Switzerland) Switzerland), 2022-01, Vol.3 (3), p.839-852
Hauptverfasser: Rodríguez-Rastrero, Manuel, Ortega-Martos, Almudena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the aim of contributing to the knowledge of soil organic carbon stocks in dry areas, this work is based on a quantification of SOC stocks in gypsum-bearing soils whose vertical and spatial heterogeneity greatly limits inferring the total SOC stocks solely from soil surface information. Public databases of soil profiles were key to this quantification, through which it was estimated which amounts of organic carbon can potentially be excluded from calculations associated with soil C cycle models in the absence of information regarding deep soil horizons. These databases include two key factors in the quantification of SOC stocks, which are often excluded: the volume of coarse fragments and the thickness of all sampled soil horizons where SOC concentration was determined. The observed average value of SOC stocks in the studied subsurface horizons reaches 73% of the whole soil. Climate, relief, and land use influence the quantity and heterogeneity of SOC stocks in these soils. Information based on the mere surface of the soil is not relevant to quantify the total SOC; however, the calculation of stocks through soil pits of medium depth (30 cm) has proven to be potentially useful as a complementary approach to these stocks.
ISSN:2673-4834
2673-4834
DOI:10.3390/earth3030048