Methodology for Removing Striping Artifacts Encountered in Planet SuperDove Ocean-Color Products

The Planet SuperDove sensors produce eight-band, three-meter resolution images covering the blue, green, red, red-edge, and NIR spectral bands. Variations in spectral response in the data used to perform atmospheric correction combined with low signal-to-noise over ocean waters can lead to visible s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-12, Vol.16 (24), p.4707
Hauptverfasser: Slocum, Brittney, Ladner, Sherwin, Lawson, Adam, Lewis, Mark David, McCarthy, Sean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Planet SuperDove sensors produce eight-band, three-meter resolution images covering the blue, green, red, red-edge, and NIR spectral bands. Variations in spectral response in the data used to perform atmospheric correction combined with low signal-to-noise over ocean waters can lead to visible striping artifacts in the downstream ocean-color products. It was determined that the striping artifacts could be removed from these products by filtering the top of the atmosphere radiance in the red and NIR bands prior to selecting the aerosol models, without sacrificing high-resolution features in the imagery. This paper examines an approach that applies this filtering to the respective bands as a preprocessing step. The outcome and performance of this filtering technique are examined to assess the success of removing the striping effect in atmospherically corrected Planet SuperDove data.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16244707