Embo: a Python package for empirical data analysis using the Information Bottleneck
We present , a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables and , the IB finds the stochastic mapping of that encodes the most information about , subject to...
Gespeichert in:
Veröffentlicht in: | Journal of open research software 2021-05, Vol.9 (1), p.10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present
, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables
and
, the IB finds the stochastic mapping
of
that encodes the most information about
, subject to a constraint on the information that
is allowed to retain about
. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab. |
---|---|
ISSN: | 2049-9647 2049-9647 |
DOI: | 10.5334/JORS.322 |