Moving Real-Target Imaging of a Beam-Broaden ISAL Based on Orthogonal Polarization Receiver and Along-Track Interferometry

In response to the application requirement of wide-range high-resolution imaging of non-cooperative moving real targets by inverse synthetic-aperture ladar (ISAL), experiments were conducted on the depolarization effect of target materials, and the polarization selection of ISAL receiving and transm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-09, Vol.16 (17), p.3201
Hauptverfasser: Gao, Jinghan, Li, Daojing, Wu, Jiang, Cui, Anjing, Wu, Shumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In response to the application requirement of wide-range high-resolution imaging of non-cooperative moving real targets by inverse synthetic-aperture ladar (ISAL), experiments were conducted on the depolarization effect of target materials, and the polarization selection of ISAL receiving and transmitting channels was discussed. Considering the impact of target depolarization and the demand for along-track interferometry, combined with beam-broaden and high-gain amplifiers, an ISAL system design method that can stably image multiple non-cooperative real targets has been proposed. Under the condition of broadening the transmitting and receiving beams to 3° in the elevation direction for non-cooperative moving vehicles, echo data with a duration of 1 s is obtained. The spatial correlation algorithm combined with along-track interferometry is used to estimate the vibration phase error. The sub-aperture Range-Doppler algorithm is used for imaging. The ISAL imaging results of the moving vehicle validated the high-resolution imaging ability of ISAL and its potential for stable imaging of non-cooperative moving real targets.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16173201