Preliminary Safety Analysis of Megaconstellations in Low Earth Orbit: Assessing Short-Term and Long-Term Collision Risks
The deployment of megaconstellations in low Earth orbit (LEO) poses significant collision risks with space debris. This paper focuses on analyzing the short-term and long-term collision probabilities of megaconstellations to assess their collision risk. Firstly, a short-term collision risk evolution...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-04, Vol.14 (7), p.2953 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The deployment of megaconstellations in low Earth orbit (LEO) poses significant collision risks with space debris. This paper focuses on analyzing the short-term and long-term collision probabilities of megaconstellations to assess their collision risk. Firstly, a short-term collision risk evolution model is developed to accurately address rendezvous collisions. Secondly, a long-term collision risk evolution model is established by considering space object density, space debris attenuation, space target disintegration, and the distribution of disintegration targets. Through simulations conducted on the Starlink Phase I constellation, the results demonstrate a 30–40% increase in short-term collision probability within the constellation shell, a 70.2% probability of at least one collision during the constellation’s lifetime, and a 25.3% increase in secondary collisions following a collision event. This study provides a reference and application for analyzing the orbital safety of LEO megaconstellations and for promoting the sustainable development and utilization of space resources. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14072953 |