Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together
The human cortex is never at rest but in a state of sparse and noisy neural activity that can be detected at broadly diverse resolution scales. It has been conjectured that such a state is best described as a critical dynamical process—whose nature is still not fully understood—where scale-free aval...
Gespeichert in:
Veröffentlicht in: | Physical review research 2021-06, Vol.3 (2), p.023224, Article 023224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human cortex is never at rest but in a state of sparse and noisy neural activity that can be detected at broadly diverse resolution scales. It has been conjectured that such a state is best described as a critical dynamical process—whose nature is still not fully understood—where scale-free avalanches of activity emerge at the edge of a phase transition. In particular, some works suggest that this is most likely a synchronization transition, separating synchronous from asynchronous phases. Here, by investigating a simplified model of coupled excitable oscillators describing the cortex dynamics at a mesoscopic level, we investigate the possible nature of such a synchronization phase transition. Within our modeling approach we conclude that—in order to reproduce all key empirical observations, such as scale-free avalanches and bistability, on which fundamental functional advantages rely—the transition to collective oscillatory behavior needs to be of an unconventional hybrid type, with mixed features of type-I and type-II excitability, opening the possibility for a particularly rich dynamical repertoire. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.3.023224 |