Electrohydraulic Forming of Low Volume and Prototype Parts: Process Design and Practical Examples

Electro-Hydraulic Forming (EHF) is a high rate sheet metal forming process based on the electrical discharge of high voltage capacitors in a water-filled chamber. During the discharge, the pulsed pressure wave propagates from the electrodes and forms a sheet metal blank into a die. The performed lit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Manufacturing and Materials Processing 2021-06, Vol.5 (2), p.47
Hauptverfasser: Mamutov, Alexander V., Golovashchenko, Sergey F., Bessonov, Nicolas M., Mamutov, Viacheslav S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electro-Hydraulic Forming (EHF) is a high rate sheet metal forming process based on the electrical discharge of high voltage capacitors in a water-filled chamber. During the discharge, the pulsed pressure wave propagates from the electrodes and forms a sheet metal blank into a die. The performed literature review shows that this technology is suitable for forming parts of a broad range of dimensions and complex shapes. One of the barriers for broader implementation of this technology is the complexity of a full-scale simulation of EHF which includes the simulation of an expanding plasma channel, the propagation of waves in a fluid filled chamber, and the high-rate forming of a blank in contact with a rigid die. The objective of the presented paper is to establish methods of designing the EHF processes using simplified methods. The paper describes a numerical approach on how to define the shape of preforming pockets. The concept includes imposing principal strains from the formed blank into the initial mesh of the flat blank. The principal strains are applied with the opposite sign creating compression in the flat blank. The corresponding principal stresses in the blank are calculated based upon Hooke’s law. The blank is then virtually placed between two rigid plates. One of the plates has windows into which the material is getting bulged driven by the in-plane compressive stresses. The prediction of the shape of the bulged sheet provides the information on the shape of the preforming pockets. It is experimentally demonstrated that using these approaches, EHF forming is feasible for forming of a fragment of a decklid panel and a deep panel with complex curvature.
ISSN:2504-4494
2504-4494
DOI:10.3390/jmmp5020047