An open‐source, expert‐designed decision tree application to support accurate diagnosis of myeloid malignancies

Accurate, reproducible diagnoses can be difficult to make in haemato‐oncology due to multi‐parameter clinical data, complex diagnostic criteria and time‐pressured environments. We have designed a decision tree application (DTA) that reflects WHO diagnostic criteria to support accurate diagnoses of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EJHaem 2021-05, Vol.2 (2), p.261-265
Hauptverfasser: Coats, Thomas, Bean, Daniel, Vatopoulou, Theodora, Vijayavalli, Dhanapal, El‐Bashir, Razan, Panopoulou, Aikaterini, Wood, Henry, Wimalachandra, Manujasri, Coppell, Jason, Medd, Patrick, Furtado, Michelle, Tucker, David, Kulasakeraraj, Austin, Pawade, Joya, Dobson, Richard, Ireland, Robin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate, reproducible diagnoses can be difficult to make in haemato‐oncology due to multi‐parameter clinical data, complex diagnostic criteria and time‐pressured environments. We have designed a decision tree application (DTA) that reflects WHO diagnostic criteria to support accurate diagnoses of myeloid malignancies. The DTA returned the correct diagnoses in 94% of clinical cases tested. The DTA maintained a high level of accuracy in a second validation using artificially generated clinical cases. Optimisations have been made to the DTA based on the validations, and the revised version is now publicly available for use at http://bit.do/ADAtool.
ISSN:2688-6146
2688-6146
DOI:10.1002/jha2.182