Compact Implicit Integration Factor Method for the Nonlinear Dirac Equation

A high-order accuracy numerical method is proposed to solve the (1+1)-dimensional nonlinear Dirac equation in this work. We construct the compact finite difference scheme for the spatial discretization and obtain a nonlinear ordinary differential system. For the temporal discretization, the implicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2017-01, Vol.2017 (2017), p.1-8
Hauptverfasser: Zhang, Jing-Jing, Shao, Jing-Fang, Li, Xiang-Gui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-order accuracy numerical method is proposed to solve the (1+1)-dimensional nonlinear Dirac equation in this work. We construct the compact finite difference scheme for the spatial discretization and obtain a nonlinear ordinary differential system. For the temporal discretization, the implicit integration factor method is applied to deal with the nonlinear system. We therefore develop two implicit integration factor numerical schemes with full discretization, one of which can achieve fourth-order accuracy in both space and time. Numerical results are given to validate the accuracy of these schemes and to study the interaction dynamics of the nonlinear Dirac solitary waves.
ISSN:1026-0226
1607-887X
DOI:10.1155/2017/3634815