Plastic mulching enhances maize yield and water productivity by improving root characteristics, green leaf area, and photosynthesis for different cultivars in dryland regions
Uneven precipitation during the growing season and frequent seasonal droughts on the Loess Plateau in Northwest China adversely affect crop production and water use efficiency. While plastic mulching (PM) has been used to alleviate water stress, few studies have examined the traits maize cultivars n...
Gespeichert in:
Veröffentlicht in: | Agricultural water management 2024-12, Vol.305, p.109105, Article 109105 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uneven precipitation during the growing season and frequent seasonal droughts on the Loess Plateau in Northwest China adversely affect crop production and water use efficiency. While plastic mulching (PM) has been used to alleviate water stress, few studies have examined the traits maize cultivars need to adapt to the altered water environment under PM and achieve high yields. A two-year field experiment was conducted to assess the root characteristics and aboveground growth traits of three widely used high-yielding maize cultivars—Zhengdan 958 (ZD), Huanong 138 (HN), Heboshi 122 (HBS)—under no mulching (NM) and PM conditions. Among the three cultivars, HBS had the highest root system indices—root length density (RLD), root surface area density (RSD), and root biomass—in the topsoil (0–40 cm), followed by ZD and HN under both NM and PM conditions. Under NM, HBS_NM treatment exhibited strong water absorption, improving photosynthesis and yield, making it suitable for drought conditions. Under PM, topsoil moisture increased significantly, with root system indices increasing by 22.5–36.1 % for RLD, 30.2–36.1 % for RSD, and 25.2–36.5 % for root biomass across the cultivars compared to NM. While ZD_PM did not have the highest root system indices under PM, it exhibited higher green leaf area index (4.5–7.5 %), chlorophyll content (2.8–8.6 %), and photosynthetic rate (6.0–14.5 %), resulting in the highest aboveground biomass and yield among the treatments. These findings suggest ZD is better adapted to the enhanced soil moisture under PM. Future research should focus on breeding genotypes that thrive under PM conditions, emphasizing traits such as larger leaf areas and higher photosynthetic rates to boost crop productivity in rainfed areas.
•HBS cultivar has the largest root system and yield under uncovered conditions.•Plastic mulching (PM) increased soil moisture and promotes root growth.•ZD cultivar shows the highest yield and water productivity under PM conditions.•ZD cultivar has the highest green leaf area and photosynthetic capacity under PM. |
---|---|
ISSN: | 0378-3774 1873-2283 |
DOI: | 10.1016/j.agwat.2024.109105 |