Tailings Settlement Velocity Identification Based on Unsupervised Learning

In order to reasonably and accurately acquire the settlement interface and velocity of tailings, an identification model of tailing settlement velocity, based on gray images of the settlement process and unsupervised learning, is constructed. Unsupervised learning is used to classify stabilized tail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-12, Vol.11 (12), p.1903
Hauptverfasser: Xie, Jincheng, Qiao, Dengpan, Han, Runsheng, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to reasonably and accurately acquire the settlement interface and velocity of tailings, an identification model of tailing settlement velocity, based on gray images of the settlement process and unsupervised learning, is constructed. Unsupervised learning is used to classify stabilized tailing mortar, and the gray value range of overflow water is determined. Through the identification of overflow water in the settlement process, the interface can be determined, and the settlement velocity of tailings can be calculated. Taking the tailings from a copper mine as an example, the identification of tailings settling velocity was determined. The results show that the identification model of tailing settlement speed based on unsupervised learning can identify the settlement interface, which cannot be manually determined in the initial stage of settlement, effectively avoiding the subjectivity and randomness of manual identification, and provide a more scientific and accurate judgment. For interfaces that can be manually recognized, the model has high recognition accuracy, has a rapid and efficient recognition process, and the relative error can be controlled within 3%. It can be used as a new technology for measuring the settling velocity of tailings.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11121903