Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase
Atorvastatin is a widely used statin drug that prevents cardiovascular disease and treats hyperlipidemia. The major metabolites in humans are 2-OH and 4-OH atorvastatin, which are active metabolites known to show highly inhibiting effects on 3-hydroxy-3-methylglutaryl-CoA reductase activity. Produci...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-01, Vol.11 (2), p.603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atorvastatin is a widely used statin drug that prevents cardiovascular disease and treats hyperlipidemia. The major metabolites in humans are 2-OH and 4-OH atorvastatin, which are active metabolites known to show highly inhibiting effects on 3-hydroxy-3-methylglutaryl-CoA reductase activity. Producing the hydroxylated metabolites by biocatalysts using enzymes and whole-cell biotransformation is more desirable than chemical synthesis. It is more eco-friendly and can increase the yield of desired products. In this study, we have found an enzymatic strategy of P450 enzymes for highly efficient synthesis of the 4-OH atorvastatin, which is an expensive commercial product, by using bacterial CYP102A1 peroxygenase activity with hydrogen peroxide without NADPH. We obtained a set of CYP102A1 mutants with high catalytic activity toward atorvastatin using enzyme library generation, high-throughput screening of highly active mutants, and enzymatic characterization of the mutants. In the hydrogen peroxide supported reactions, a mutant, with nine changed amino acid residues compared to a wild-type among tested mutants, showed the highest catalytic activity of atorvastatin 4-hydroxylation (1.8 min−1). This result shows that CYP102A1 can catalyze atorvastatin 4-hydroxylation by peroxide-dependent oxidation with high catalytic activity. The advantages of CYP102A1 peroxygenase activity over NADPH-supported monooxygenase activity are discussed. Taken together, we suggest that the P450 peroxygenase activity can be used to produce drugs’ metabolites for further studies of their efficacy and safety. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11020603 |