Numerical Analysis of Unsteady Characteristics of the Second Throat of a Transonic Wind Tunnel

The unsteady characteristics of the second throat of a transonic wind tunnel have an important influence on the design and test of the wind tunnel. Therefore, the forced oscillation characteristics were studied by a numerical simulation method. The governing equation was the viscous compressible uns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2023-11, Vol.10 (11), p.956
Hauptverfasser: Cong, Chenghua, Qin, Honggang, Yi, Xingyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The unsteady characteristics of the second throat of a transonic wind tunnel have an important influence on the design and test of the wind tunnel. Therefore, the forced oscillation characteristics were studied by a numerical simulation method. The governing equation was the viscous compressible unsteady Navier–Stokes equation. Under the sinusoidal pressure disturbance of the computational domain exit, the shock wave presents a clear forced oscillation state, and the shock wave periodically changes its position. Under a pressure disturbance of 1%, the shock wave displacement reaches 150 mm. Additionally, overshoot occurs when the shock moves upstream or downstream. The shock-boundary layer interference is very sensitive to the motion characteristics of the shock wave, resulting in a transformation of the flow field symmetry. The flow field downstream of the shock wave exhibits periodic structural changes. Compared with the pressure change at the outlet, the pressure change near the shock wave has a phase delay. The increasing disturbance near the shock wave shows a clear amplification effect. The pressure disturbance near the shock wave had an obvious amplification effect, and its fluctuation amount reached 16% under the pressure disturbance of 1%. The variation trend of the second throat wall force, wavefront Mach number, and Mach number in the test section with time is similar to that of the downstream disturbance, but it does not have a complete follow-up effect, which indicates that the pressure disturbance can propagate into the test section through the boundary layer or the shock gap. Nevertheless, the second throat choking can still control the Mach number stability of the test section. The dynamic characteristics of shock oscillation are related to the amplitude and frequency of the applied pressure disturbance. The shock displacement decreases with the increase in the excitation frequency. When the excitation frequency is higher than 125 Hz, the flow field basically does not change.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace10110956