Resistance to grain protectants and synergism in Pakistani strains of Sitophilus oryzae (Coleoptera: Curculionidae)
The widespread use of insecticides for the management of insect pests in storage facilities and food industries have caused insecticide resistance a frequent issue worldwide. Nonetheless, this issue has been little explored in Pakistan that resulted in control failures and increased dosage of insect...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-07, Vol.12 (1), p.12401-12401, Article 12401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widespread use of insecticides for the management of insect pests in storage facilities and food industries have caused insecticide resistance a frequent issue worldwide. Nonetheless, this issue has been little explored in Pakistan that resulted in control failures and increased dosage of insecticides. In the present study, insecticide resistance to chlorpyrifos-methyl, pirimiphos-methyl, permethrin and spinosad was surveyed in five field strains of
Sitophilus oryzae
: FSD-SO, GJR-SO, DGK-SO, MTN-SO and BWP-SO, collected from five different localities of Punjab, Pakistan, and contrasted with an insecticide susceptible reference strain (Lab-SO). Dose-mortality bioassays were performed in glass vials containing insecticide-treated rice grains, and lethal doses (LD
50
and LD
95
) were calculated and compared using the ratio tests. In comparison to the Lab-SO strain at LD
50
and LD
95
levels, field strains exhibited: 24.51 to 52.80 and 36.55 to 69.31 resistance ratios (RRs), respectively, for chlorpyrifos-methyl; 15.89 to 45.97 and 55.12 to 194.93 RRs, respectively, for pirimiphos-methyl; 39.76 to 108.61 and 61.33 to 130.12 RRs, respectively, for permethrin; 4.23 to 27.50 and 6.28 to 41.00 RRs, respectively, for spinosad. In the synergism experiments using the Lab-SO and the most resistant strains against each insecticide, the enzyme inhibitors (PBO and DEF) failed to synergize toxicity of insecticides in the Lab-SO strain; however, toxicity of chlorpyrifos-methyl, pirimiphos-methyl and permethrin significantly enhanced in the resistant strains of
S. oryzae
, suggesting possibility of metabolic mechanism of resistance. In addition, activities of detoxification enzymes (CarE, MFO and GST) were significantly higher in resistant strains compared to the Lab-SO strain. The results revealed presence of insecticide resistance in field strains of
S. oryzae
that necessitate the need to develop a resistance management strategy. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-16412-y |