Statistical analysis of single-copy assays when some observations are zero

Observational and interventional studies for HIV cure research often use single-copy assays to quantify rare entities in blood or tissue samples. Statistical analysis of such measurements presents challenges due to tissue sampling variability and frequent findings of 0 copies in the sample analysed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Virus Eradication 2019-09, Vol.5 (3), p.167-173
Hauptverfasser: Bacchetti, Peter, Bosch, Ronald J, Scully, Eileen P, Deng, Xutao, Busch, Michael P, Deeks, Steven G, Lewin, Sharon R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Observational and interventional studies for HIV cure research often use single-copy assays to quantify rare entities in blood or tissue samples. Statistical analysis of such measurements presents challenges due to tissue sampling variability and frequent findings of 0 copies in the sample analysed. We examined four approaches to analysing such studies, reflecting different ways of handling observations of 0 copies: (A) replace observations of 0 copies with 1 copy; (B) add 1 to all observed numbers of copies; (C) treat observations of 0 copies as left-censored at 1 copy; and (D) leave the data unaltered and apply a method for count data, negative binomial regression. Because research seeks to estimate general patterns rather than individuals' values, we argue that unaltered use of 0 copies is suitable for research purposes and that altering those observations can introduce bias. When applied to a simulated study comparing preintervention to postintervention measurements within 12 participants, methods A-C showed more attenuation than method D in the estimated intervention effect, less chance of finding  
ISSN:2055-6640
2055-6659
DOI:10.1016/s2055-6640(20)30047-9