Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders

Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-05, Vol.14 (1), p.2852-13, Article 2852
Hauptverfasser: Sundaresan, Neereja, Yoder, Theodore J., Kim, Youngseok, Li, Muyuan, Chen, Edward H., Harper, Grace, Thorbeck, Ted, Cross, Andrew W., Córcoles, Antonio D., Takita, Maika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data. Quantum error correction will be the key to allow large-scale quantum computing operations in the future. Here, the authors use a superconducting qubit system to demonstrate quantum error correction of a distance-three logical qubit in the heavy-hexagon subsystem code.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38247-5